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a  b  s  t  r  a  c  t

A  new  model  in  the NPZ  (nutrient–phytoplankton–zooplankton)  style is presented,  mechanistically  sim-
ple  but  with  40 size  classes  each  of  phytoplankton  (1–20  !m) and  small  zooplankton  (2.1–460  !m),  in
order  to  resolve  one  level  of trophic  interactions  in  detail.  General,  empirical  allometric  relationships  are
used to parameterize  both  the optimal  prey  size  and  size  selectivity  for each  grazer  class,  as is rarely
done.  This  inclusion  of  complex  predator–prey  linkages  and  realistic  prey preferences  yields  a system
with  an  emergent  pattern  of phytoplankton  diversity  consistent  with  global  ocean  observations,  i.e., a
parabolic  relationship  between  diversity  (as measured  by  the  Shannon  evenness)  and  biomass.  It also
yields  significant  long-term  time  evolution,  which  places  limits  on the  extent  to  which  the  community
response  to  nutrient  forcing  can  be predicted  from  forcing  in  a pragmatic  sense.  When  a  simple  annual
cycle  in  nutrient  supply  is  repeated  exactly  for many  years,  transient  fluctuations  up to  a  factor  of  two
in spring  bloom  magnitude  persist  for  10–20  years  before  a stable  seasonal  biomass  cycle  is  achieved.
When  the  amplitude  of  the  nutrient-supply  annual  cycle  is  given  a random  interannual  modulation,  these
long-lived  transients  add  significant  noise  to  a 100-year  correlation  between  annual-mean  nutrient  sup-
ply and annual-mean  biomass.  This  noise  is  20%  of  total  interannual  variance  in the  model  base  case,
and  ranges  from  0%  to  40%  depending  on the  grazer  size  selectivity.  In  general,  unpredictability  on  the
bloom  timescale  is damped  when  food-web  complexity  is  increased  by  making  grazers  less  selective,
while  unpredictability  on  the interannual  scale  shows  the  opposite  pattern,  increasing  with  increas-
ing  food-web  complexity  up  to a high  threshhold,  past  which  community  structure  and  biomass  time
evolution  both  suddenly  simplify.  These  results  suggests  a new  strategy  for ensemble  ecosystem  forecast-
ing  and  uncertainty  estimation,  analogous  to methods  common  in  circulation  and  climate  modeling,  in
which  internal  variability  (predator–prey  interactions  in the  biological  case;  eddies  and  climate-system
oscillations  in  the physical  case)  are resolved  and quantified,  rather  than  suppressed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Natural plankton communities are far more diverse than even a
very complicated numerical model can account for (Hutchinson,
1961; Sournia et al., 1991). This diversity is crucial to the role
of the plankton in marine food webs and biogeochemical cycles,
and for at least two decades the ocean modeling community
has been using a variety of approaches to better capture it, as
reviewed further below. This study uses an idealized, size-spectral,
nutrient–phytoplankton–zooplankton (NPZ) model to explore an
aspect of planktonic diversity that has generally been underrepre-
sented in this work: structure and variation in zooplankton prey
preferences, i.e., the landscape of what eats what among the plank-
ton.
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Studies relating food-web complexity to community structure
and function have a long history in theoretical biology (e.g., McCann
et al., 1998; Chen and Cohen, 2001; Kondoh, 2003), but most con-
temporary plankton models derive from other lineages (Gentleman
et al., 2003). Diversity-resolving planktonic ecosystem models can
be sorted into two families, and recent results in both of these
provide the motivating questions for this study. The first, size-
spectral models (Moloney and Field, 1991; Gin et al., 1998; Baird
and Suthers, 2007; Stock et al., 2008; Fuchs and Franks, 2010),
map  planktonic diversity onto a single variable, body size, and
use allometric power laws to set growth rates, nutrient/light/prey
response parameters, and so forth for each size class. Baird and
Suthers (2007) demonstrated the need to resolve the size spec-
trum with a sufficient number of size classes to avoid mathematical
artifacts, and demonstrated the rich, semi-chaotic behavior that
becomes possible when phytoplankton, microzooplankton, and
mesozooplankton are all included with detail and care. Poulin and
Franks (2010) presented an idealized model that demonstrated the
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importance of top-down control in shaping biomass size spectra
in the ocean, and also found constraints on the particular allomet-
ric power laws that yield biomass spectra consistent with reality, a
step toward linking the “free” or empirical parameters that define
a size-spectral model to the ecosystem structure and function the
model predicts. Still, these and other size-spectral models have con-
tinued to treat predator–prey interactions relatively simply, e.g.,
by allowing only one prey class per predator, or using a single
predator–prey size ratio, instead of letting this optimal size ratio
itself vary allometrically.

Sometimes the simplification of trophic interactions in such
models is very much by design: Armstrong (2003) proposed a
hybrid method that specially constructs the zooplankton size
spectrum to ensure a temporally smooth solution. Poulin and
Franks (2010) similarly focused on steady-state solutions of their
model, and assumed a continuous biomass size spectrum with
a definable slope. Such approaches are appropriate to large-
scale biogeochemical applications, where transient predator–prey
oscillations might well be considered noise, but for other appli-
cations like harmful algal blooms or coastal food-web dynamics,
where time evolution and the interplay of bottom-up and top-
down controls may  be of great interest, it is limiting. The model
design in this study is based on the idea that grazer prey pref-
erences can be treated with detail and empiricism equal to
that used for vital rates and other physiological parameters;
and that whatever chaotic or disequilibrium phenomena result
should be accepted as potentially important parts of the solu-
tion.

The second broad class of diversity-resolving models avoids a
reliance on allometry (which is an incomplete representation of
diversity at best), and instead uses natural-selection or optimiza-
tion principles to let parameter values emerge dynamically from
the model solution, rather than being imposed a priori. For exam-
ple, Follows et al. (2007) seeded a global ocean model with many
Prochlorococcus-like phytoplankton classes, with temperature- and
light-response parameters chosen randomly from an empirically
chosen range. Competition among these random variants yielded
an emergent biogeography reflecting bottom-up controls on the
phytoplankton. Goebel et al. (2010) adapted this approach to model
small and large phytoplankton in the California Current System.
Bruggeman and Kooijman (2007) present a model written in terms
of a continuous, trait-based representation of a phytoplankton
community whose dynamics are based even more explicitly on bio-
logical optimization principles. What remains unclear is whether
these optimization/natural-selection approaches can be extended
in the same terms to the representation of zooplankton grazing and
higher trophic levels (Mariani and Visser, 2010) suggests one direc-
tion. The new model experiments discussed in this paper suggest
that in fact inclusion of well-resolved diversity among grazers may
have a fundamentally different effect from inclusion of phytoplank-
ton physiological diversity, working against rather than supporting
the emergence of a stable, optimal plankton community, and plac-
ing fundamental limits on predictability of ecosystem dynamics
(Baird, 2010).

The next section describes the model design and parameter-
ization. Section 3.1 discusses the model’s behavior under steady
nutrient forcing. Since this model is run, for clarity, in an extremely
simple testbed, instead of comparing it with observations from any
particular location, I use integral metrics of ecosystem function to
establish that this model has sufficient realism (i.e., lack of pathol-
ogy) to proceed, and then discuss emergent patterns of community
structure. Section 3.2 then uses test cases involving seasonal and
interannual variation in nutrient supply to demonstrate the emer-
gence of limits on ecosystem predictability, and to demonstrate the
central role of the grazer prey preferences in defining the level of
unpredictability.

Fig. 1. Schematic of the ASTroCAT model. Circles represent nitrogen stocks, arrows
indicate nitrogen fluxes.

2. The model

2.1. Model formulation

The model, named ASTroCAT (Allometric/Stochastic Trophic
Complexity Analysis Tool), is schematized in Fig. 1. It uses nitrogen
as its currency (stocks are reported in units of !mol N m−3, or !M),
with compartments for dissolved nutrients (N), 40 size classes of
phytoplankton (P), and 40 classes of small zooplankton (Z). The ver-
sion used here has been kept mechanistically minimal, containing
only a single bottom-up control (nutrient limitation of P growth),
a single top-down control (higher predation on Z), and one highly
resolved level of trophic interactions (P–Z) in between. There is no
light or temperature dependence to P growth, and no distinction
made between the rate and timing of phytoplankton cell growth
and the rate and timing of uptake of the limiting nutrient.

The physical testbed is a single box, and the detrital pool and
regeneration pathways are not tracked: mortality and zooplank-
ton egestion (sloppy feeding) are treated as losses from the model
nitrogen pool, and whatever fraction of these losses is ultimately
regenerated is folded into an imposed, external nutrient supply (S).
Thus the model can be thought of as an “open” or “flowthrough” NPZ
system, as opposed to the classical “closed” NPZ system (Franks,
2002), which sends mortality and egestion losses directly back into
the N pool.1 The minimalism of this model configuration makes
the interpretation of results easier, but for a realistic application,
one would, at a minimum, add light-dependence to phytoplankton
growth, resolve at least one spatial dimension in the domain, and
explicitly track detritus.

The model equations are as follows:

dPi

dt
= !i

0
N

ki
s + N

Pi −
�

j

grazij − m!i
0Pi (1)

dZj

dt
= ε

�

i

grazij − #ZjZtot (2)

1 The closed formulation implicitly assumes that regeneration is local and instan-
taneous, and uses the initial stock of total nitrogen as an imposed forcing parameter.
The open formulation assumes that regeneration is complicated and happens else-
where (e.g., Plattner et al. (2005)), and uses the flux of new and regenerated nitrogen
from below or outside as the forcing parameter. This open formulation is motivated
by  highly advective systems like upwelling zones.
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dN
dt

= S −
�

i

!i
0

N

ki
s + N

Pi + (1 − ε − feg)
�

j

�

i

grazij (3)

Pi and Zj are the ith and jth phytoplankton and zooplankton classes.
(For clarity, a subscript i always denotes a phytoplankton size
class and j a zooplankton class. See Table 1 for a summary of all
symbols used.) Phytoplankton population growth (1) is a balance
between (i) nutrient uptake (i.e., growth), controlled by a maxi-
mum growth rate !i

0 and a nutrient half-saturation ki
s; (ii) grazing;

and (iii) non-grazing mortality, written as a fraction m ≈ 0.1 of the
maximum uptake rate (cf. Ref. Moloney and Field, 1991). Zooplank-
ton population growth (2) is a balance between assimilation of
ingested phytoplankton (a growth efficiency ε times total grazing)
and mortality, i.e., higher predation. This mortality closure term is
quadratic (Edwards and Yool, 2000), implicitly assuming that the
stock of predators on Zj is proportional to the total zooplankton
stock Ztot ≡

�
jZj. Finally, the N budget (3) is a balance between

the imposed nutrient supply S, uptake by P, and a fraction of total
grazing representing excretion by Z. If one imagines S to represent
an advective input from or diffusive exchange with a subsurface
nutrient pool, then for physical consistency one must consider the
corresponding loss of P and Z to dilution. These losses are small
compared with the P and Z mortality terms, however, as estimated
using observations from the Oregon-Washington upwelling zone
(Hickey et al., 2010), and so in order to avoid the introduction of
another free parameter, these dilution losses have been omitted.

Two parameters, ε and the egestion fraction feg, control the par-
titioning of total grazing grazij into assimilation (to Zj), excretion
(to N), and egestion (to the unmodeled detrital pool, i.e., a loss from
the system). For simplicity, I have set ε = feg = 1/3, representing an
equal partitioning among the three. Hansen et al. (1997) report that
ε ≈ 0.3 for a wide range of zooplankton, and that it does not appear
to vary allometrically.

Grazing of the ith phytoplankton class by the jth zooplankton
class is given by

grazij = Ij
0

ϕijPi

Kj
s +

�
iϕijPi

Zj (4)

where Ij
0 is the maximum ingestion rate, Kj

s is the prey half-
saturation level, and ϕij is the relative preference of Zj for prey type
Pi. Prey preference is assumed to vary with prey size xi

prey in a log-
Gaussian distribution around the optimal prey size for each grazer
xj

prey opt :

ϕij = exp



−

�
log10 xi

prey − log10 xj
prey opt

%xprey

�2


 (5)

The width of the Gaussian is controlled by a prey size tolerance
parameter &xprey (which has units of log x, not x). Eq. (5) gives the
base-case, allometric formulation of the prey preferences; results
are also discussed in Section 3.1.3 for a variant, stochastic formula-
tion given by

ϕstoch
ij = ϕijexp(rR) (6)

where R is a normally distributed random variable with variance 1,
and r is a free “stochasticity” parameter.

2.2. Allometric parameterization

The allometric dependence of !i
0, Ij

0, ki
s and xj

prey opt on
body size is given in Table 2, along with the review studies used
to determine these power laws. Body sizes are specified as equiva-
lent spherical diameter (ESD). Note that these allometric laws are

Fig. 2. (a) Allometry of maximum ingestion rate for flagellates, dinoflagellates,
ciliates, and copepods, adapted from Hansen et al. (1997). (b) Allometry of prey
size  preference for several zooplankton taxa, adapted from Hansen et al. (1994).
Horizontal bars show the standard deviation of organisms body size, and vertical
solid/dotted bars show prey size at which relative grazer preference is 50%/10%.
A  log-linear regression to all taxa except dinoflagellates (dashed line) was used to
parameterize ϕ, and the width of the preference curves (vertical bars) for ciliates,
nauplii, and copepodites was used to choose %xprey.

simply imposed in ASTroCAT as empirical facts, in contrast to stud-
ies that attempt to model the biological processes that give rise to
this allometry in the first place (Weitz and Levin, 2006; Troost et al.,
2008). The vital rates !i

0 and Ii
0 show strong and similar falloff with

increasing body size, according to the reviews by Tang (1995) and
Hansen et al. (1997).  Note that within any given size class, around
these log-linear regressions, !i

0 and Ii
0 vary by approximately an

order of magnitude (Fig. 2a). Eppley et al. (1969) report even greater
variance around the allometric trend for nutrient half-saturation ki

s
– at the 95% confidence level, the scale coefficient is uncertain by a
factor of 30 (0.01–0.3 !M N, with a power-law exponent 0.6–1.3) –
and so for simplicity I have approximated this scaling as ki

s = 0.1xi.
Hansen et al. (1997) found that prey half-saturation Ks has essen-
tially no allometric dependence, although within every functional
group surveyed it varies by almost two  orders of magnitude.

Prey size preferences among small flagellates, ciliates, copepod
nauplii and copepodites, as surveyed by Hansen et al. (1994),  are
themselves body size-dependent. The power law (Table 2) is poorly
constrained, but no more poorly constrained than that for, e.g.,
maximum ingestion rate (Fig. 2). Note that it is nevertheless com-
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Table  1
Definitions of symbols used in this study, with units where appropriate. !M N = mmol  nitrogen m−3.

Symbol Units Definition

feg Fraction of grazing egested
gi d−1 Specific grazing rate for phytoplankton class i
grazij !M N d−1 Total grazing flux from Pi to Zj

Ij
0 d−1 Maximum ingestion rate for zooplankton class j

Kj
s !M N Prey half-saturation level for zooplankton class j

ki
s !M N Nutrient half-saturation level for phytoplankton class i

m Phytoplankton mortality, as a fraction of maximum growth rate
N  !M N Dissolved nutrient stock
n  Number of size classes
Pi !M N Phytoplankton biomass in size class i
Ptot !M N Total phytoplankton biomass
R Normally distributed random function
r Stochasticity level
S  !M N d−1 External nutrient supply
xi

prey !m Individual size in phytoplankton (prey) class i
xj

prey opt !m Optimum prey size for zooplankton class j
Zj !M N Zooplankton biomass in size class j
Ztot !M N Total zooplankton biomass
%xprey log10 !m Prey size tolerance for each grazer
ε Zooplankton growth efficiency
#  (!M N)−1 d−1 Zooplankton quadratic mortality
!i

0 d−1 Maximum uptake/growth rate for phytoplankton class i
ϕij Preference of grazer Zj for prey Pi

ϕstoch
ij

Grazing preferences with stochastic variation included

mon  to choose power laws for vital rates using this sort of empirical
review but to treat prey size preferences more simply, for mathe-
matical convenience. Note also that the exponent relating optimum
prey size to predator body size (Table 2) is far from 1, which is the
implicit assumption of models that use a constant predator–prey
size ratio. In other words, most small grazers (with a caveat below)
eat phytoplankton closer to their own size than large grazers do.
Data from the same study were used to choose an empirical, best-
fit value for %xprey of 0.25, based on the observed size selectivity of
ciliates, nauplii, and copepodites.

The model implementation discussed here includes 40 equally
log-spaced classes of P from 1 to 20 !m,  and 40 matching classes
of Z from 2.1 to 460 !m.  The xprey opt power law is used to choose
the zooplankton size classes, so that every Z class has its optimal
prey size available. It is also important to insure that overall range
of P and Z sizes match in this sense, to avoid creating classes of
organisms at the small or large ends of the spectrum that are arti-
ficially released from grazing pressure or artificially suppressed. A
potential elaboration of this model would be to include separate
spectra of microzooplankton and mesozooplankton (see Ref. Baird
and Suthers, 2007), to allow meaningful inclusion of larger organ-
isms and their life cycles and also to better represent Z predation
on Z, which the present model omits.

An important caveat is that heterotrophic dinoflagellates do not
follow the xprey opt power law: they are relatively large cells that

eat phytoplankton of their own size or even larger (Hansen, 1992;
Jacobson, 1999). Likewise, autotrophic dinoflagellates fall partic-
ularly far below the !0 power law (Tang, 1995). Thus even at a
broad, functional-group level, this allometric parameterization is
far from a complete representation of the evolutionary tradeoffs
among the plankton. The allometry used in this study expresses
just one essential tradeoff, in which small phytoplankton grow
more quickly and scavenge nutrients at low concentrations more
effectively than large cells, but are subject to more intense grazing
pressure, since their grazers also have higher growth and inges-
tion rates. In traditional functional-group modeling, it is almost
inevitable that this model with its single tradeoff would reduce
to two P classes, “small” and “large”. However, the results below
will demonstrate that resolving trophic complexity creates niches
for intermediate, “suboptimal” size classes as well, and changes
overall system behavior.

2.3. The monotypic limit

One mathematical consistency check on the model formulation
is that in the monotypic limit – that is, the case where all size classes
are parameterized identically, or the alternate case where only one
size class of P and Z contain any biomass – the model should still
behave intelligibly as a three-compartment NPZ model. In either

Table 2
Allometric parameterizations and empirical parameter values used in this study.

Empirical fit Applicability Source

!i
0 = (2.6 d−1)

�
xi

1 !m

�−0.45
Phytoplankton
1–100 !m ESD

Tang (1995)

ki
s = (0.1 !M N)

�
xi

1 !m

�
Phytoplankton
5–210 !m ESD

Eppley et al. (1969)

Ij
0 = (26 d−1)

� xj
1 !m

�−0.4
Flagellates, dinoflagellates, ciliates, copepods Hansen et al. (1997)

Ks = 3 !M N Flagellates, dinoflagellates, ciliates, copepods Hansen et al. (1997)

xj
prey opt = (0.65 !m)

�
xj

pred
1 !m

�0.56

Flagellates, ciliates, nauplii, copepodites Hansen et al. (1994)

%xj
prey = 0.25 Ciliates, nauplii, copepodites Hansen et al. (1994)
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of these limiting cases (identical size classes or a single size class),
summing (1)–(3) over i, j yields

dN
dt

= S − !0
N

ks + N
Ptot (7)

dPtot

dt
=

�
(1 − m)!0

N
ks + N

− I0
Ztot

Ks + Ptot

�
Ptot (8)

dZtot

dt
=

�
εI0

Ptot

Ks + Ptot
− #Ztot

�
Ztot (9)

The one difficulty is the normalization of ϕ, which cannot be
made to satisfy both these monotypic limits simultaneously. As
written in (5),  ϕ is normalized correctly for the single-size class
limit. In the identical-size-class limit – as is true in general unless
Pi(x) and ϕij are specially constructed – the fact that ˙i(ϕijPi) /= Ptot
means that the effective prey half-saturation level for the com-
munity as a whole is somewhat different from Ks. (This can be
shown by summing (4) over i and writing the result in terms of
Ptot and an effective half-saturation, which can then be solved for
algebraically: see Ref. Gentleman et al. (2003) for further discussion
of this normalization issue.) In other words, Ks should be thought of
as merely a scale for the prey half-saturation, which depends on the
prey biomass distribution and thus changes over time and among
cases.

Eqs. (7)–(9) can be used to choose a biologically reasonable value
for the mortality parameter #. For a long-term equilibrium to be
possible when Ptot ≈ Ks, it is necessary that:

# ≈
εI2

0
4!0Ks

(10)

or, for the median values of Ij
0 and !i

0 along the size spectrum,
# ≈ 1 !M−1d−1. This is the value used for the base-case experiment
below.

2.4. Code implementation

The source code and a graphical interface to this model are
available online at http://faculty.washington.edu/banasn/models/
astrocat. This model implementation, which includes both the
model itself and an interactive visualization system, is written in
Java using the Processing toolkit (http://www.processing.org). It
has been designed to encourage adaptation by others, not just
to investigate planktonic diversity as discussed in this paper, but
also as a convenient means for nonspecialists to implement and
investigate any model in the NPZ family (or stock-flux models in
general). A model running in this visualizer consists of an “Ecosys-
tem” code object linked to an “Environment” object which handles
timestepping (in this version, a first-order implicit scheme) and
also provides a means for constructing a spatially resolved domain
more elaborate than the zero-dimensional box used here. The
“Ecosystem” object contains lists of “StateVariables”, “Fluxes” and
“FreeParameters”, each definable in one line of code, and a method
(which runs on each timestep) in which formulas for the Fluxes are
given. Thus Eqs. (1)–(3) are represented in code as a list of the indi-
vidual fluxes that constitute each balance, with exchanges between
compartments and tracer conservation handled at a deeper, more
utility-like level of the code. This makes modification and replace-
ment of the biological model itself much easier. Basic NPZ and
NPZD (nutrient–phytoplankton–zooplankton–detritus) models are
included in the code package as templates for other applications.
When run as a desktop application, this visualizer also allows one
to save results for quantitative analysis in the NetCDF file format.
Scripts that replicate all model experiments shown in this paper
are also included.

Fig. 3. Biomass under steady nutrient forcing in the model base case. (a and b)
Phytoplankton biomass by size class over 2 and 10 years of model time evolution.
(c)  Ten years of zooplankton time evolution.

3. Results

3.1. Behavior under steady forcing

3.1.1. Structure of the size spectrum
To explore the basic dynamics of the ASTroCAT model, I will

begin with a set of experiments under steady nutrient forcing. A
range of nutrient-supply levels from 0.06 to 4 !M d−1 was tested.
This maximum value is high but still physically realistic: 4 !M d−1

throughout a 20 m surface layer is equivalent to 0.9 !mol  m−2 s−1,
at the nominal high end of turbulent nitrate fluxes measured by
Hales et al. (2005) on the Oregon inner shelf, an active upwelling
zone. I will use S = 1 !M d−1 as the base case.

Time series of P and Z biomass by size class are shown in Fig. 3
for a 10 year run of the base case, along with time series of Ptot and
Ztot. Two  features of the solution are immediately apparent. First,
biomass is highly clustered into certain sets of size classes, rather
than forming a continuous size spectrum. The slope of the plank-
tonic biomass size spectrum has frequently been invoked as a key
metric of community structure and function (Sheldon et al., 1972;
Zhou and Huntley, 1997), and so the nonmonotonicity of these
results is striking. At the same time, peaks and valleys along the
size spectrum have also been frequently observed in real plankton
populations (Chisholm, 1992; Schartau et al., 2010), particularly in
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Fig. 4. Effect of grazer selectivity, i.e., the width %xprey of the prey preference function ϕ (a), on time–mean biomass size spectra for phytoplankton (b) and zooplankton (c).
The  model base case, with %xprey chosen from general laboratory data (Fig. 2b), is labeled.

enriched or naturally nutrient-rich systems (Cavender-Bares et al.,
2001). It is common to attribute these peaks and valleys to tran-
sient trophic interactions (references above), and indeed, in this
model, the size clustering appears to be a direct result of the struc-
ture given to the prey preferences. Even when all other variation
among size classes besides ϕij is turned off (not shown), the P and
Z biomass spectra show this clustering.

A set of experiments in which %xprey was varied 8-fold
around the base case (Fig. 4) demonstrates that the spacing of
biomass–spectrum peaks is controlled by the grazers’ size selec-
tivity. When Z classes are highly specialized in their prey (%xprey
small), the biomass spectra approach continuous distributions,
while generalist grazers (%xprey large) yield spectra with only two
or three peaks. One might expect that a more complicated model,
in which a wider variety of evolutionary strategies among the
phytoplankton were represented, would yield spectra with more
classes of “winners” in them and thus somewhat more continu-
ous spectra; likewise for a model in which physical variability were
allowed to realistically perturb the plankton community on a range
of timescales.

The second notable feature of the base-case biomass size spec-
trum (Fig. 3) is its time-dependence. The system does not reach
steady state, even in qualitative terms, for several years: the P
and Z communities shift from 3- to 4-peak spectra after 1 and 4
years, respectively (Fig. 3a and c). Oscillatory tradeoffs between
size classes occur with periods from days to years, despite the fact
that even the largest and slowest-growing organisms included have
vital rates on the order of 1 d−1. This system does not appear to
be chaotic, tending as it does to an uncomplicated steady state:
when the model is run for a further 90 years (not shown), no new
changes in qualitative behavior appear. Nevertheless, in a prag-
matic sense – in terms of the model’s predictive power when
applied to real systems – this long-term time dependence has
implications similar to the chaotic behavior observed in other
ecosystem models (Baird, 2010; Hastings and Powell, 1991; May,
1976) as well as in living planktonic systems (Benincà et al.,

2008). These implications are considered further below, in the
context of realistically time-varying nutrient forcing. First, I will
use this simpler, steady-forcing case to examine mechanistic rela-
tionships between growth, grazing, and community structure and
function.

3.1.2. Response to nutrient supply and grazing pressure
A set of cases varying the one bottom-up control in the

model, nutrient supply S, and another set varying the one top-
down control, higher mortality #, are shown in Fig. 5. The
time–mean P biomass spectrum is used as one metric of the sys-
tem response, along with two measures of ecosystem function: a
nutrient-limitation metric for each P size class ki

s (ki
s + N)

−1
and a

grazing-limitation metric for each size class gi/!i, where gi is the
effective grazing rate

gi ≡ 1
Pi

�

j

grazij (11)

When this nutrient limitation metric equals 0, nutrients are sat-
urating, and when it equals 1, they are fully exhausted. When this
grazing limitation metric equals 0, grazing is completely absent,
and when it equals 1, grazing balances primary production and pop-
ulation growth stops (although to be more precise, because of the
“other mortality” term in (1), population growth is slightly negative
at this point).

As S is increased, the abundance of large phytoplankton
increases (Fig. 5a). This is an important test of the realism of
the model, shown more summarily in Fig. 6. At low nutrient-
supply levels, small phytoplankton dominate the community, while
as nutrient supply increases, the small-phytoplankton population
responds relatively weakly while the >5 !m fraction of the phy-
toplankton population increases dramatically. This accords with
observations from many high- and variable-nutrient-supply sys-
tems (Chisholm, 1992). Increasing S also moves the system,as one
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Fig. 5. Effect of varying external nutrient supply S and higher predation on zooplankton # on mean phytoplankton biomass spectra (top) and metrics of grazing limitation
and  nutrient limitation (bottom) for each size class.

would expect, away from nutrient limitation and toward grazing
limitation, that is, top-down control (Fig. 5c). Increasing # has the
opposite effect (Fig. 5d), shifting the system toward bottom-up con-
trol, via a trophic cascade in which grazing is suppressed by higher
predation.

3.1.3. Effect of stochastic prey preference
Since the selectivity of individual grazers appears to be impor-

tant (Fig. 4), it is worth asking to what extent the patterns discussed
above are artifacts of the relative lack of variation from one grazer
to the next in this smooth, allometric parameterization. The broad-
scale allometric variations discussed so far might be taken to
represent functional-group-level diversity, in a mathematically

Fig. 6. Relationship between total phytoplankton biomass, biomass in the <5 !m
size range, and nutrient supply, demonstrating that community shifts sensibly from
domination by small cells to domination by large cells over a realistic range of
nutrient supply levels.

simple way. Next I will discuss the effect of adding stochasticity
to the grazing preferences (Eq. (6)), meant to represent species-
level diversity. Microzooplankton can be extremely selective in
their feeding (Burkhill et al., 1987; Flynn et al., 1996; Stoecker et al.,
1981), even among nearly identical prey species (Olson et al., 2008),
in ways that size-based prey preferences – or indeed, any parame-
terization short of listing individual species – are unable to capture.
Adding stochastic noise to ϕij is a crude mathematical representa-
tion of this diversity, which provides a test of the model’s sensitivity
to these unparameterizable fine-scale preferences.

Eight sets of stochastic noise (R in Eq. (6)) were constructed and
incorporated into the prey preferences at a range of values of the
stochasticity parameter r. Phytoplankton biomass by size class over
time, as in Fig. 3, is shown in Fig. 7 for one example case out of these
eight. At r = 1, the temporal variability of the system increases dra-
matically, with large-magnitude blooms of individual size classes
taking place on timescales from a few days to hundreds of days.
The amplitude of this temporal variability shows no obvious trend
over the 10 year model run, in contrast to the asymptotic behav-
ior of the nonstochastic r = 0 case (Figs. 3b and 7a). The clustering
into four peaks along the size spectrum seen in the steady case is
also disrupted. Signs of all these behaviors, particularly the last, are
also apparent at a much lower level of stochastic variation (r = 0.25,
Fig. 7b).

At r = 0.25, despite the disruption of the smoothly clustered size
spectrum, there is no significant change in mean total biomass rela-
tive to the base case (mean Ptot = 3.7 ± 0.3 !M N for the ensemble of
8 cases, compared with 3.8 !M N for r = 0). Likewise, the nutrient-
limitation and grazing-limitation metrics shown in Fig. 5 only shift
by 3% to 11%, respectively. Under more extreme stochastic varia-
tion (r = 1), the shifts in these mean metrics do become significant
(e.g., mean Ptot = 10 ± 2 !M N), but it appears that overall ecosystem
function is insensitive to small-to-moderate (r = 0.25) variation in
the details of the prey preferences.

3.1.4. Diversity patterns
This last result confirms the common rule of thumb that while

functional-group-level diversity among the plankton is crucial to
marine ecosystem dynamics, the noise introduced by species-level
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Fig. 7. Matrix of prey preferences ϕ and ESD-versus-time diagrams of phytoplankton biomass for an example case drawn from an ensemble of experiments adding fine-scale,
stochastic noise to the prey preferences. Results are shown for three values of the stochasticity parameter r (see Eq. (6)), with the random noise function R held constant.
The  r = 0 case (a) is identical to the model base case shown in Fig. 3, although here biomass is plotted on a log rather than linear scale, to better show the intense transient
blooms that develop as r is increased (b and c).

variation can largely be averaged away in a broad-scale description
of a system. Nevertheless, a model system like ASTroCAT raises the
possibility of investigating or predicting patterns of variation on the
species level, rather than simply averaging them away. The rela-
tionship between ecosystem diversity and total biomass is shown
in Fig. 8. Diversity is quantified here using the Shannon evenness

−1
n

�

i

Pi/Ptot

ln(Pi/Ptot)
(12)

where n = 40 is the number of species or size classes. For each
stochastic case with r = 1, as well as for the nonstochastic base
case, nutrient supply was varied as in Figs. 5 and 6, and time-mean
biomass and evenness calculated for both P and Z. Total phyto-
plankton biomass varies parabolically with evenness (Fig. 8a), with
or without stochastic variation in the prey preferences. That is, as
biomass increases with increasing nutrient supply (a monotonic
relationship in all cases), diversity is relatively low when biomass
is either very low or very high. This replicates the result of Irigoien
et al. (2004),  who concluded that planktonic biomass and diversity
had a parabolic relationship in general based on a broad compila-
tion of field observations. Irigoien et al. (2004) found this to be true
for both phytoplankton and zooplankton, whereas in this model it
true for phytoplankton only. It is possible that the diversity pat-
tern for zooplankton in the model would change if the next level of
trophic interactions were explicitly resolved.

3.2. Behavior under time-varying forcing

The experiments described so far under steady nutrient forc-
ing show that internal variability in this model ecosystem
(predator–prey and competitive interactions) give rise to long-
lived transients on timescales up to 1–2 years. This raises the
possibility of interaction between internal variability and vari-
ability in external forcing, not just on bloom timescales but on
seasonal or interannual scales as well. In future work, in a more
realistic testbed, this could be explored by driving ASTroCAT with
realistically time-variable forcing and testing it against actual
observations. As a first step in this direction, I conducted a set
of model runs in which the nutrient supply was varied in a sinu-
soidal seasonal cycle, from 0 to 1 !M d−1. This scenario is meant
to represent the annual cycle in a temperate upwelling zone like

Fig. 8. Shannon evenness (Eq. (12)) for phytoplankton and zooplankton as a func-
tion of biomass, as nutrient supply is varied in the allometric base case (dotted
line) and an ensemble of stochasticity-adding cases (solid gray lines). In all cases,
the  relationship between phytoplankton diversity and biomass is parabolic, but the
relationship between zooplankton diversity and biomass is close to monotonic.
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Fig. 9. Annual-cycle experiments in which a sinusoidal pattern of nutrient supply (a) is repeated exactly for 100 years, and the resulting 100 annual cycles of phytoplankton
biomass superimposed as a function of yearday, for each of four experiments at varying levels of grazer selectivity %xprey (b–e). The initial 20 years are plotted as thin red
dotted  lines, years 21–100 as thin black solid lines.

the California Current System (CCS), although in the real CCS light
rather than nutrients is generally limiting in winter. (Better real-
ism would require a less minimalist testbed.) These runs were
100.5 years long, beginning in mid-summer – the first 6 months are
discarded as spinup – and they can be thought of as 100 sequen-

tial realizations of the annual cycle, in which the only difference
between realizations is the biomass initial condition, the seed stock
left after the previous year’s summer bloom dies back in winter.

Results are shown in Fig. 9b for a range of prey size tolerances
%xprey. The initial 20 years of each run are shown as red dotted

Fig. 10. Nutrient supply (a and c) and phytoplankton biomass by size class (b and d) over a 100 year model run in which an annual cycle of nutrient supply (as in Fig. 9) was
modulated by a normally distributed random function to produce interannual variation (c). A ten year slice of this model run is magnified in (a and b). Nutrient forcing and
annual-mean biomass for the full model run are shown in (c and d).
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Fig. 11. Annual-mean phytoplankton biomass as a function of annual-mean nutri-
ent supply, for the model run shown in Fig. 10c  and d. Total biomass and biomass
in  the <5 !m range are shown: compare Fig. 6.

lines, so that initial transients can be distinguished from long-term
behavior. When %xprey is small and grazers highly selective (com-
pare Fig. 4), the mean annual cycle of biomass follows the sinusoidal
pattern of the forcing, although there is also persistent bloom-
timescale variation of approximately a factor of two  throughout the
model run. In contrast, at very large %xprey, the 100-year time series
quickly collapses to a fixed annual cycle without significant year-
to-year variation. This cycle is likewise approximately sinusoidal,
following the forcing time series, except for a large and repeatable
spring bloom. At the medium value of %xprey that represents the
empirical base case, there is, as in the large %xprey case, a fixed
annual cycle in the model’s long-term behavior. This cycle, how-
ever, is much more complicated than the nutrient forcing function,
with a number of spring and mid-summer blooms superimposed on
the basic sinusoid. In addition, this model case shows strong, long-
lived transients superimposed on this long-term solution: variation
in bloom amplitude up to a factor of two, persisting 10–20 years into
the simulation (red dotted lines).

This decades-long ringing of the model’s initial condition sug-
gests the hypothesis that if forcing were to vary on the same
interannual or decadal scale, a steady state might never be
achieved, or at least be delayed. To test this, I conducted another
set of 100-year runs in which the amplitude of each year’s peak
nutrient supply varied randomly around the mean of 1 !M d−1, in
a normal distribution with std dev 0.25 !M d−1. A sample decade
(years 70–80) in the base-case simulation is shown in Fig. 10a and
b, with annual averages of S and Pi for the full run shown in Fig. 10c
and d. The correlation between annual-mean S and annual-mean
P biomass is shown in Fig. 11,  for total biomass and the <5 !m
size fraction, as in Fig. 6. Biomass is significantly correlated with
nutrient supply on this timescale, but there is also substantial inter-
annual variance unexplained by this relationship as well (r2 = 0.8,
not 1). Since nutrient supply is the only external factor varying
between years, the unexplained variance in this correlation can
be taken as a quantification of the inherent unpredictability of the
ecosystem (in a pragmatic sense: this system may  or may  not be
chaotic in the mathematical sense).

The 100-year interannual-variation experiment was  repeated
for a range of values of %xprey, to examine the effect of grazer
selectivity and thus food-web complexity on system predictabil-

ity (Fig. 12a). In general, as selectivity decreases and complexity
increases, the system’s biomass response to nutrient forcing
becomes more unpredictable, with up to 40% of interannual vari-
ance not explained by any external factor (i.e., r2 = 0.6). Note that
this monotonic trend ends abruptly at %xprey = 0.421, when the
mean P biomass spectrum switches from three distinct peaks
to two, similar to the progression shown in Fig. 4b for the
steady-forcing case. The same experiment was  repeated using the
base-case value of %xprey but varying the number of P, Z size classes
n from 2 to 80 (Fig. 12b). The n = 2 case represents a simple division
into “small” and “large” phytoplankton, which would, as discussed
above, be a natural way to represent the biology included in ASTro-
CAT in a functional-group-style as opposed to size-spectral NPZ
model. At this low- n limit, r2 ≈ 1, meaning that annual-mean S is
almost a perfect predictor of annual-mean Ptot. Between n = 4 and
n = 6, the model’s behavior switches abruptly to a regime in which
r2 ≈ 0.8, including the base case. This suggests that the inherent
unpredictability of this system results from internal dynamics that
require a certain level of diversity resolution to appear.

4. Discussion and conclusions

4.1. Summary

To summarize, the model described above extends recent work
in size-spectral plankton modeling by parameterizing zooplankton
feeding preferences as realistically and empirically as can be done
in allometric terms (Fig. 2b), by analogy with common practice for
treating vital rates (e.g., Fig. 2a). Experiments were also conducted
adding stochastic, fine-scale, “species-specific” variation to these
allometric prey preferences. The result is a model ecosystem whose
behavior approaches the complication of real data, both for better
and for worse. By “for worse” I mean the occurrence of strong and
very long-lived transients, whose significance I will discuss further
below. By “for better” I mean the emergence of nontrivial mean pat-
terns of community structure, which suggest quantitative, testable
links (i) between the waviness of the size spectrum and grazer
selectivity (Fig. 3), and (ii) between phytoplankton diversity and
biomass (Fig. 8).

A set of annual-cycle and interannual-variability experiments
(Figs. 9 and 10)  show a complicated relationship between food-
web complexity (here represented by the width of each grazer’s
prey size tolerance) and the predictability of the ecosystem under
slow changes in nutrient supply. I use “predictability” here in the
pragmatic sense of “allowing one to model ecosystem response to
external forcing based on a simple rule, such as a linear regres-
sion”. It is necessary to distinguish between multiple timescales of
predictability to summarize the ASTroCAT results.

On the bloom timescale, unpredictability decreases with increas-
ing food-web complexity. That is, for specialist grazers (%xprey
small : Fig. 9b), the time evolution of phytoplankton biomass
over a single growing season is full of factor-of-two variation on
timescales of days to weeks, not forced by any change in nutri-
ent supply other than the annual cycle. For generalist grazers
(%xprey large : Fig. 9e), the population’s time evolution over one
season is very smooth. This pattern confirms the results of Baird
and Suthers (2010),  who found that increasing structural com-
plexity in a different size-spectral plankton model also resulted
in reduced growth of initial-condition perturbations over a few
hundred days. On the interannual scale, however, the opposite
pattern occurs. Unpredictability increases with increasing food-
web complexity, up to a high threshhold near %xprey ≈ 0.4, where
community structure and time-evolution suddenly simplify. The
correlation between annual-average nutrient supply and P biomass
over a range of interannual-variation experiments (Fig. 12)  shows
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Fig. 12. Correlation r2 between annual-mean nutrient supply and annual-mean phytoplankton biomass, as grazer selectivity (a) and number of size classes (b) are varied
around the model base case shown in Figs. 10 and 11 (circled points). High values of r2 indicate a simple, predictive relationship between bottom-up forcing and ecosystem
response; low values indicate the partial confounding of this relationship by internal variability.

this most clearly, but the magnitude and duration of initial tran-
sients in the annual-cycle cases (Fig. 9b–e, red dotted lines) show
the same behavior.

The diversity of ecosystem behaviors in this parametric land-
scape is strong motivation for treating trophic interactions in
plankton models with the same care and empiricism as phyto-
plankton physiology and growth. Gentleman et al. (2003) highlights
the wealth of biological implications that go along with any choice
of functional form for grazing, most of them probably unintended
and possibly pathological. The focus in this study on the shape of the
prey preferences is intended as a complement. Further theoretical
work on the relationship between grazing, stability, and diversity
needs to consider functional responses and prey preferences simul-
taneously, along the lines of Post et al. (2000).

4.2. Implications for ecosystem prediction

What does the emergent unpredictability of models like ASTro-
CAT or that of Baird (2010) mean for the practical goal of numerical
ecosystem forecasting? An analogy with circulation and climate
modeling is useful. Hawkins and Sutton (2010) divide uncertainty
in regional climate models into (i) internal variability, (ii) model
uncertainty, which includes both parameter uncertainty and struc-
tural uncertainty related to model design, and (iii) uncertainty in
forcing scenarios. They find that all three of these categories can be
dominant at some timescale of prediction. In biogeochemical mod-
eling, model uncertainty has received the most attention (Fennel
et al., 2001; Friedrichs et al., 2007; Fulton et al., 2003, 2004). There
is no a priori reason, however, to think that internal variability is
less important to ecosystem prediction than it is to the regional cli-
mate models described by Hawkins and Sutton (2010).  In climate
modeling, this internal variability consists of free oscillating modes
like ENSO, the Pacific Decadal Oscillation, the North Atlantic Oscil-
lation, and so on. In atmospheric modeling, it can be thought of as
synoptic-scale weather systems; in ocean circulation modeling, it
consists of eddies and unstable jets. In biogeochemical modeling,
it consists largely of transient blooms and predator–prey oscilla-
tions, “ecosystem weather”, and in general it is suppressed in order
to make bottom-up linkages clear and clean.

This suppression of internal variability can happen in a number
of ways. It is a natural consequence of omitting planktonic diver-
sity, and thus happens by default in simple NPZ-type models, as in
ASTroCAT for n ≤ 4 (Fig. 12b). It happens as well in models where
phytoplankton diversity is resolved but predator diversity is omit-
ted or minimal (Bruggeman and Kooijman, 2007; Follows et al.,
2007). In some cases it is very much by design: Armstrong (2003)

presents a method for constructing the grazer field in a size-spectral
model specifically to eliminate predator–prey oscillations, treat-
ing these oscillations, as is common, as instabilities analogous to
the purely numerical errors that arise from a poor discretization or
timestepping scheme.

For many large-scale biogeochemical applications, these
approaches are appropriate and powerful. In other contexts, how-
ever, it may  be better to view predator–prey oscillations in plankton
models not as errors at all, but rather as idealizations of real
and potentially important internal variability, as suggested by the
analogies above. In ocean circulation modeling, one does not inten-
tionally suppress eddies, but rather works to resolve them, and
then averages. Likewise, when a global climate model produces
a century-scale projection of future change, that projection also
contains daily weather and free interannual oscillations; the statis-
tics of this short-term internal variability are important metrics of
the model results and can also be used as checks on the model’s
mechanistic validity. ASTroCAT is an experiment in treating the
transients associated with trophic complexity in the same terms,
as real dynamics to resolve and quantify, rather than artifacts to
suppress.

This shift in perspective opens up new possibilities in ecosystem
forecasting. First, it makes possible a new kind of ensemble fore-
casting with analogs in weather and climate modeling (Bracco et al.,
2004; Di Lorenzo et al., 2010; Tebaldi and Knutti, 2007), in which
without any manipulation of parameter values, initial conditions
are varied slightly among multiple realizations in order to reveal
and isolate chaotic internal variability. The interannual-variability
experiments described above (Fig. 11)  suggest how this approach
could be used to distinguish the “bottom-up-deterministic” portion
of the ecosystem response from inherently unpredictable trophic
effects. This approach allows one to place confidence limits on a
model result and define a fundamental limit to system predictabil-
ity (Huisman and Weissing, 2001) on a given timescale.

The second opportunity that arises from resolving rather than
suppressing trophic complexity is an expanded ability to treat
diversity patterns as a dynamic part of the solution (Fig. 8). As a
point of comparison, consider the trait-based model of Bruggeman
and Kooijman (2007),  which yields a phytoplankton community
that always responds optimally to nutrient and light conditions,
but which, as a result of its optimality, cannot simulate or
explain coexistence Huisman and Weissing (1999) and Hutchinson
(1961).  Region- or problem-specific models built with an alter-
native logic similar to ASTroCAT, in which optimality is probably
never achieved in any realistic, time-variable forcing scenario,
would allow one to quantitatively test hypotheses concerning
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coexistence, species persistence, and predictability of individual
species within a population, along the lines of Litchman et al.
(2009), Weitz and Levin (2006) and Williams (2008).  These appli-
cations would be most relevant to problems where “ecosystem
weather” is of central concern, like controls on and predictability
of harmful algal blooms.
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