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Bowhead whales and
copepods in Disko Bay



Disko Bay is a particularly
important foraging site for
bowhead whales in early spring
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Behavioural observations, copepod abundance data, and bioenergetic
considerations are consistent if bowhead whales consume 26-75% of CREENCAND
the copepod standing stock annually.
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Table 1. Quantities used in estimation of bowhead whale foraging on copepods.
Uncertainty is reported either as + standard deviation or as (5th, 95th percentiles).

Symbol  Definition Units Value Uncertainty Source
Habitat parameters
Adisko Bay area km? 6000
heop Thickness of deep copepod layer m S (2,:18) Heide-Jorgensen et al. 2013,
Fig. 6
Beop Area-specific copepod biomass gC m™ 3.6 (0.14,11)
Foraging parameters
Neais Number of whales in entire pop. 1500 (830,2250) Rekdal et al. (2015)
N Number foraging at one time 740 (360, 1460)  Rekdal et al. (2015)
3mouth Mouth area m’ 4 Werth (2004)
§ Swimming speed ms’ g7 =0 Simon et al. (2009)
oy Duration of foraging period d 120 £15
foraz Fraction of day actively foraging 03 =0
Bioenergetic parameters
Biisis Indiv. metabolic requirement kcald?! 1.1x 10° Laidre et al. (2007), assuming
80% adult female + 10% adult
male + 10% juveniles
€cop Energy density of copepods kcal gC™* 16 Karnovsky et al. (2003),

assuming 0.4 gC (g dry wt)™

(Banas, Mgller, Laidre, Simon, Ellingsen, Nielsen, in prep.)



Three Calanus spp. coexist in Disko Bay

(Choquet et al. 2017)



% C. finmarchicus

100
30 -
60 -
40 -
20 -

... but the proportions are shifting:
Atlantification / Borealisation

X  June

X

1995 2000 2005 2010 2015

Year

(Mgaller and Nielsen 2019)



Generalising



In general, lower-latitude copepods have lower lipid content
(and therefore lower value as prey) than their high-latitude cousins
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Figure 6. Conceptual understanding of the effects of borealization of the Arctic on length of productive season, body size, indvidual lipsd
content, life span and population turn over of Arctic (blue) and boreal (red) Calanus populations, and on total population hipid production
Where seasonal ice cover and low temperature preval (central Arctic Ocean, towards the left of the continuum), large, lipid-nch and long-

lived species may prevad, but population turn-over rates and total ipid production remain low. A high degree of borealization (right side)

charactenized by increased water temperatures, loss of sea ice and prolonged productive season, short life cycles, and high population turn

over may lead to high population ipid production despite a sheft towards smaller individual size and lipid content,

(Renaud et al., ICES J Mar Sci, 2018)



Region-specific shifts in zooplankton community composition

Bering Sea (60°N)
warm years;

US Pacific Northwest (45°N)
warm decades

Disko Bay, West Greenland
Atlantification, 2000s—

C. hyperboreus,
C. glacialis vs
C. finmarchicus

North Sea
warming trend, 1960s—

C. finmarchicus vs C. helgolandicus

Impacts on pollock, salmon, cod,
forage fish, seabirds, whales...
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competing, distinct species or a continuous
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Figure 1. Prosome length frequency distribution of copepodite

stages CIV (n = 341) and CV (n = 886) and adult females (AF,

n = 329) of C glacialis (blue) and C. finmarchicus (red). Species

determined based on genetics. Grey shaded area indicates size

classes classified as C. glacialis (Daase and Eiane, 2007) (see also (Re nau d et d l- 20 ]- 8)
Figure 3).



A trait-based model
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Past approaches

Optimal annual routines
(Varpe et al. 2007, 2009; Houston & McNamara
1999, Clark & Mangel 2000)

focus on reserves
and timing

Emergent copepod communities
(Record et al. 2013)

trait-based
metacommunity

\4

Coltrane (Copepod life-history traits and adaptation to novel environments)
(Banas et al. Front. Mar. Res., 2016)
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An environment is defined by time series of

surface and deep temperature and prey availability...

GREENLAND

Estimated phytoplankton /
available prey (mg chl m=3)

1 1 L}

- Total chi

===. Chi> 11lpm

eaes. Chl > 11pm + microzooplankton
Model

Temperature (°C)

... and in future work, a relative measure of
predation risk, defined in terms of light.




Steps (Coltrane 2.0) Threshholds

For every combination of spawn date X diapause entry

four timing strategy parameters, «— X diapause exit
X start of egg production

- Calculate development sequence. = Diapause-capable
(An environment in Coltrane is 3 time series: \J‘Ji by winter
Prey, surface temperature, deep temperature) LEVEL 1

(cf. models of Arctic range
limits by Ji et al. 2011,
Feng et al. 2016, 2017)



Steps Threshholds

For every combination of spawn date X diapause entry

four timing strategy parameters, «— X diapause exit
X start of egg production

- Calculate development sequence. = Diapause-capable
=9 by winter
LEVEL 1
- Calculate net energy gain (ingestion minus | Reach adulthood
metabolism), body size, and egg production. without starving

LEVEL 2

cf. other DEB models



Steps Threshholds

For every combination of spawn date X diapause entry

four timing strategy parameters, «— X diapause exit
X start of egg production

- Calculate development sequence. #= " Diapause-capable
= by winter
LEVEL 1
- Calculate net energy gain (ingestion minus | Reach adulthood
metabolism), body size, and egg production. @ without starving
LEVEL 2
- Integrate predation mortality to produce a Reproduce at
timeseries of survivorship, and calculate =5 replacement rate

fitness (lifetime eggs egg1). LEVEL 3



Steps

Threshholds

For every combination of spawn date X diapause entry

four timing strategy parameters, «— X diapause exit

X start of egg production

- Calculate development sequence.

- Calculate net energy gain (ingestion minus
metabolism), body size, and egg production.

- Integrate predation mortality to produce a
timeseries of survivorship, and calculate
fitness (lifetime eggs egg1).

Repeat fithess calculation across 2+ generations, to
resolve internal life history mismatch.
(Varpe et al. 2007)
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It turns out that two strategy traits

predict adult size in copepods across
three orders of magnitude (Oithona-

Neocalanus spp).
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Traits controlling body size in copepods: separating
general constraints from species-specific strategies
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varying relative ingestion rate | varying relative development rate

low-risk, low-reward high-risk, high-reward | high-turnover low-turnover

ambush feeding active feeding | income breeding  capital breeding

< >
4 ! LELEELELELILEY | ! LI ! LELEELELELELEY | =T LI LI !

@ 3l
>

=

i o

& 3

2 g

= 2T S S ;l.w

o » S

= : g

© S S % C. glacia

2 S o 2 !

)
10 00 Seeeee ¥
C. ﬂnmqrchlcus
0.1 10 100

Adult size (ug C)

(Banas et al., Front. Mar. Res., 2016)

(SINTEF)



GREENLAND
G DISKO
- - S e o

$
(S
2
)
>
2 )
&\0
)
<
o,
7
A
&\0
%
2
(o)
&£ £
% %, @
S £
Q, ©
g
o %
) pe)
2, 2
ie Kz
o)
S
7
A
<
<.
Avmv

15

(e-W 1Yo Suw)
d uoneJiuaouod Aasid

(@)
— LO (@)

Oct

Sep

Jul

Jun

Mar

N
o

uoljonpoid 339 aAlle|9Y

(Banas et al., Front. Mar. Res., 2016)



One recipe, many outcomes



This Disko Bay proof-of-concept is
about viability of multiple Calanus
recipes in one environment

varying relative development rate
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Next: how does a single Calanus recipe
play out across multiple environments?
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A NE-Pacific model hindcast experiment,
1998-2016, was organised around an along-
coast axis running from Baja California to the
NE Bering Sea. (Hunter et al., in prep)
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Climatology of fractional ice cover
_ = Model forcing was
constructed from GlobColour
T SRS SR 10 mgm-3 Merged-sensor chlorophyll,
1998-2016 (8 d, 25 km
S retrievals composited into
100 x 100 km averages),
2 along with NOAA Optimal
Interpolation SST, NSIDC ice

cover, and WOA13
0.5 temperature at 500 m.

| . This experiment ignores
0 100 200 300 O advection.

(Hunter et al. in prep)



adult structural weight (ug C) generations/year
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Distance along coastal axis (km)

adult structural weight (pg C) generations/year Fyr egg-fitness
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Adding advection back in...

Cold year (2009) - Warm year (2014)

X» e . ‘ Failure in first summer
B, a
I3‘o |

® ¢ o .w u o *
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Each point represents the best outcome possible along a

two-year flow trajectory (plotted at second summer).

The model also suggests a strong but incomplete population bottleneck
that restricts the flux of successful individuals from the Bering Sea onto
the Chukchi shelf and beyond, and keeps the reproductive capacity of
the individuals that do pass through below replacement rate. This
bottleneck appears to be stronger in warmer, lower-ice conditions.



Penetration of Pacific zooplankton into the
western Arctic Ocean tracked with molecular
population genetics

R. J. Nelson'?*, E. C. Carmack', F. A. McLaughlin', G. A. Cooper?

(2009)

. Alaska




NH5 (Newport)
©

We construct pan-Arctic
hindcasts and projections in
Coltrane by running it along
particle tracks in the 3D
biophysical models BIOMAS
(Pacific) and SINMOD (Atlantic).



Allowing £20% variation in

development rate

(along with flexibility in life-history/
diapause timing as before)

Longitude along Atlantic inflow
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Allowing £20% variation in

development rate
(along with flexibility in life-history/
diapause timing as before) Each point represents the centre of

mass of egg production by a Calanus
cohort that has successfully matured

10° ¢ and overwintered without starving. ? 0.4
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Adult size (ugC)
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C. finmarchicus
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Abundance of C. finmarchicus (top) and C. glacialis
(bottom) in summer surveys, 1993-2016.

-100 20

C. finmarchicus are found as far into the Eurasian Arctic
as 90 °E—but without the early life stages that indicate
continuing reproduction. In contrast, early stages of C.
glacialis are found into the E Siberian Sea and beyond.

(E Ershova and
K Kosobokova)



But where have the species gone?
(And does it matter?)
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C. finmarchicus I
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Prosome length (mm)

Whether to model diverse, plastic communities as competing, fixed-trait
species/populations or continuous, fully plastic trait distributions isn’t
just a matter of preference or philosophy.

We don’t know which of these better highlights the actual drivers of
long-term change.



X June

% C. finmarchicus

1995 2000 2005 2010 2015

Year

Does the Atlantification of Disko Bay zooplankton
depict a shift in the fitness landscape driven by
local environmental cycles?

Or is it really about oceanography and ecology
upstream, on a large scale?

(Mgller and Nielsen 2019)
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11 months of transport

0-200 m average currents;

SINMOD model, courtesy I. Ellingsen
(Slagstad et al. 2015)




NH5S (Newport)
)

Next steps

We’re going to hypothesize recipes for Calanus species, not just individuals, e.g.

“Eurasian C. finmarchicus and C. glacialis are genetically distinct

H) because body size can only vary so much within one breeding population.”
H) because C. glacialis is uniquely adapted to eating ice algae.”

H) because they have unique overwintering strategies.”

H) for no functional reason at all; it’s just about advection and connectivity.”

(The goal is to reject as many of these as possible.)



Conclusions

The Coltrane model implements the hypothesis (rooted in a lab ,E“,fg“;‘; ane camebel
meta-analysis) that trait differences across northern Calanus

populations are the result of a single, shared recipe for growth and

development playing out across varying prey and temperature E?;’,‘Z%i%a"’ Front Mar

cycles.

This hypothesis has proved surprisingly difficult to reject! Both the
high adaptive capacity, and limits on adaptive capacity, of this way
of being a copepod, arise in our simulations from this general Hunter et al. in prep
arithmetic of development rate, growth rate, and days of net energy wcrae et al, in prep
gain per year.

Renaud et al. ICES
This is a powerful result for large-scale modelling of future climate- /"5 2018
change impacts. However, it means that identifying the role of o e o ar
species-level adaptations and constraints in shaping that future will
require different kinds of evidence.
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