Calanus copepods at the Arctic gateways Modelling life history and energetics along long-distance inflow corridors

Neil Banas (Univ of Strathclyde, Glasgow, Scotland)
with partners
Aidan Hunter • A Sofia Ferreira •
Elizaveta Ershova • Ksenia Kosobokova • Malin Daase •
Julie Keister • Carin Ashjian • Robert Campbell . Lisa Eisner • David Kimmel •
Eva Møller • Kristin Laidre • Malene Simon • Torkel Nielsen •
Jinlun Zhang • Ingrid Ellingsen and many others!
neil.banas@strath.ac.uk
シ @neilbanas neilbanas.com/projects/coltrane

Bowhead whales and copepods in Disko Bay

Disko Bay is a particularly important foraging site for bowhead whales in early spring

Disko Bay is a particularly important foraging site for bowhead whales in early spring

tagging study: Nielsen et al., Arctic, 2015

Dives per hour < 3

High density

The whales feed directly on overwintering copepods

Behavioural observations, copepod abundance data, and bioenergetic considerations are consistent if bowhead whales consume 26-75\% of the copepod standing stock annually.

Table 1. Quantities used in estimation of bowhead whale foraging on copepods.
Uncertainty is reported either as \pm standard deviation or as (5th, 95 th percentiles).

Symbol	Definition	Units	Value	Uncertainty	Source
	Habitat parameters				
$\mathrm{A}_{\text {disko }}$	Bay area	km^{2}	6000		
$\mathrm{~h}_{\text {cop }}$	Thickness of deep copepod layer	m	5	$(2,18)$	Heide-Jorgensen et al. 2013, $\mathrm{B}_{\text {cop }}$
	Area-specific copepod biomass	gC m		Fig. 6	

(Banas, Møller, Laidre, Simon, Ellingsen, Nielsen, in prep.)

Three Calanus spp. coexist in Disko Bay

(Choquet et al. 2017)
... but the proportions are shifting:
Atlantification / Borealisation

(Møller and Nielsen 2019)

Generalising

In general, lower-latitude copepods have lower lipid content (and therefore lower value as prey) than their high-latitude cousins

(Kattner and Hagen, 2002)

(Renaud et al., ICES J Mar Sci, 2018)

Figure 6. Conceptual understanding of the effects of borealization of the Arctic on length of productive season, body size, indvidual lipid content, life span and population turn over of Arctic (blue) and boreal (red) Calanus populations, and on total population lipid production. Where seasonal ice cover and low temperature prevail (central Arctic Ocean, towards the left of the continuum), large, lipid-rich and longlived species may prevail, but population turn-over rates and total lipid production remain low. A high degree of borealization (right side) characterized by increased water temperatures, loss of sea ice and prolonged productive season, short life cycles, and high population turn over may lead to high population lipid production despite a shift towards smaller individual size and lipid content.

Region-specific shifts in zooplankton community composition

Bering Sea $\left(60^{\circ} \mathrm{N}\right)$
warm years;
US Pacific Northwest $\left(45^{\circ} \mathrm{N}\right)$ warm decades

Calanus spp. vs Pseudocalanus spp.

Disko Bay, West Greenland Atlantification, 2000s-

North Sea
C. glacialis vs
C. finmarchicus warming trend, 1960sC. finmarchicus vs C. helgolandicus

Impacts on pollock, salmon, cod, forage fish, seabirds, whales...

Figure 1. Prosome length frequency distribution of copepodite stages CIV ($n=341$) and CV ($n=886$) and adult females (AF, $n=329$) of C. glacialis (blue) and C. finmarchicus (red). Species determined based on genetics. Grey shaded area indicates size classes classified as C. glacialis (Daase and Eiane, 2007) (see also Figure 3).

Should we model diverse, plastic reality as competing, distinct species or a continuous distribution of traits?

A trait-based model

Past approaches

Optimal annual routines

(Varpe et al. 2007, 2009; Houston \& McNamara
1999, Clark \& Mangel 2000)

Emergent copepod communities

 (Record et al. 2013)

Coltrane (Copepod life-history traits and adaptation to novel environments) (Banas et al. Front. Mar. Res., 2016)
 annual cycle, net growth rate
small number of variable traits
\longrightarrow community associated with a given environment

An environment is defined by time series of surface and deep temperature and prey availability...

... and in future work, a relative measure of predation risk, defined in terms of light.

Steps (Coltrane 2.0)

Threshholds

For every combination of spawn date \times diapause entry four timing strategy parameters, $\longleftarrow \times$ diapause exit
 \times start of egg production

- Calculate development sequence.
(An environment in Coltrane is 3 time series:
Prey, surface temperature, deep temperature)

Diapause-capable by winter
LEVEL 1
(cf. models of Arctic range
limits by Ji et al. 2011,
Feng et al. 2016, 2017)

Steps

Threshholds

For every combination of	spawn date \times diapause entry
four timing strategy parameters, \longleftarrow	\times diapause exit
	\times start of egg production

- Calculate development sequence.
- Calculate net energy gain (ingestion minus metabolism), body size, and egg production.

Steps

Threshholds

For every combination of

```
spawn date \(\times\) diapause entry
```

four timing strategy parameters, $\longleftarrow \times$ diapause exit
\times start of egg production

LEVEL 1

Diapause-capable by winter

Reach adulthood without starving

Reproduce at replacement rate fitness (lifetime eggs egg ${ }^{-1}$).
Integrate predation mortality to produce a timeseries of survivorship, and calculate

Steps

Threshholds

For every combination of
spawn date \times diapause entry four timing strategy parameters, $\longleftarrow \times$ diapause exit
\times start of egg production

- Calculate development sequence.
- Calculate net energy gain (ingestion minus metabolism), body size, and egg production.
- Integrate predation mortality to produce a timeseries of survivorship, and calculate fitness (lifetime eggs egg ${ }^{-1}$).

Repeat fitness calculation across $2+$ generations, to resolve internal life history mismatch.
(Varpe et al. 2007)

LEVEL 1

LEVEL 2

LEVEL 3

Diapause-capable by winter

Reach adulthood without starving

Reproduce at replacement rate

Replacement rate across 2 generations
= a long-term-viable population

VeL SSE 23-33, 2010 tan tosast/eepeltion	Muane bcotocy procanss semes Men Frel Mosesen	numbied Octater 35
Traits controling body size in copepods: separating		
general constraints from species-specific strategies		

Nell S. Banas ${ }^{\text {L* }}$, Robert G. Campbell ${ }^{2}$

It turns out that two strategy traits predict adult size in copepods across three orders of magnitude (OithonaNeocalanus spp).

INTRODUCTION

Body stap in othen ctied as a'mater trair' contioling or meeving as a prasy sor many moceca of fuacsoeal diveristy in plopoplankton, mooplankitan, and other quila thictinas 4 SOmarrieter 2005. Kiartoe A Hirt 2014). Allometric expleantione have a liong petigree in biology (Bergmann 189), Mceiter 1302, Feowes: \& Dotsce 1965 SOvert \& Plet 19Pal, and ter prit deciso has seen a fourtiting of tlap-based Berry-belling and deta metaransipist in plankton Welogy (Beird \& Suthers 2007, Seiz \& Calbet 2007, hanas 2011. Edwarts et al 2012. Ward et al 2012 Wirts 2012 , Repord et al. 2013. Asdessen et al 2015 Marine pelapic copepods have been the focis of mach of has wrok, sot colly bockuse of their abus desce and arobice importance tit the wortd ecean but also becasse their definite memter of melts and

[^0]devermisebe growth make thert good subjects foe cuantification of astopesebc potierns in the lab
 copepod vial tates folewilopanemt, growth. Egeation, decal pellet production, ege prodaction; to sian as woll at temperature and prey (Kimetoe \& Sebutimi tros, Hassen at at: that, Mirnt s Kiarboe 2002 . Bunker \& Hirst 2004. Salz \& Calber 200?. Kirbee shert 2054).
\$tat, besir amblgaities remain in hair growth Tabe. development tate, and atalt body slee are linked acrose copopod taka. One can imagine at actimal becoming a large adult wher by growing quickly oe making slowly: which of these betogetuse models is mate appospriater is in fair to think of growith nete as controuting edut sias in tha entogenetic senus, or shoold we rather thisk of growit for metabotic poresses in penecafl is belng coatrotiod ty body

(Banas et al., Front. Mar. Res., 2016)

One recipe, many outcomes

This Disko Bay proof-of-concept is
about viability of multiple Calanus recipes in one environment
varying relative development rate

(SINTEF)

Next: how does a single Calanus recipe play out across multiple environments?

A NE-Pacific model hindcast experiment, 1998-2016, was organised around an alongcoast axis running from Baja California to the NE Bering Sea. (Hunter et al., in prep)

(Hunter et al. in prep)

(Hunter et al. in prep)
adult structural weight ($\mu \mathrm{g} \mathrm{C}$)

generations/year
$F_{y r}$ egg-fitness

$$
\square \quad(0,0.1) \square(0.75,1.5) \square>10
$$

$$
\square(0.1,0.75) \square \quad \square \quad(1.5,10)
$$

strong warm/ cold-year variation in fitness

cf. 1000-fold variation in mean abundance (Eisner et al. 2014, Kimmel et al. 2017)

Variations in available food (top; rescaled in terms of its effect on copepod development and growth rates) and the population response (bottom), at M2 in the SE Bering Sea

Adding advection back in...

Each point represents the best outcome possible along a two-year flow trajectory (plotted at second summer).
The model also suggests a strong but incomplete population bottleneck that restricts the flux of successful individuals from the Bering Sea onto the Chukchi shelf and beyond, and keeps the reproductive capacity of the individuals that do pass through below replacement rate. This bottleneck appears to be stronger in warmer, lower-ice conditions.

Penetration of Pacific zooplankton into the western Arctic Ocean tracked with molecular population genetics

R. J. Nelson ${ }^{1,2, *}$, E. C. Carmack ${ }^{1}$, F. A. McLaughlin ${ }^{1}$, G. A. Cooper ${ }^{2}$
(2009)

\checkmark

We construct pan-Arctic hindcasts and projections in Coltrane by running it along particle tracks in the 3D biophysical models BIOMAS (Pacific) and SINMOD (Atlantic).

Allowing $\pm 20 \%$ variation in

 development rate(along with flexibility in life-history/ diapause timing as before)

Longitude along Atlantic inflow

Allowing $\pm 20 \%$ variation in development rate
(along with flexibility in life-history/ diapause timing as before)

Each point represents the centre of mass of egg production by a Calanus

Colour $=$ fraction of annual prey
saturation (\approx prey biomass, rescaled) from ice algae

Life stage

- C1-C4
- C5-AF/AM
C. glacialis

Abundance of C. finmarchicus (top) and C. glacialis (bottom) in summer surveys, 1993-2016.
C. finmarchicus are found as far into the Eurasian Arctic as $90^{\circ} \mathrm{E}$-but without the early life stages that indicate continuing reproduction. In contrast, early stages of C. glacialis are found into the E Siberian Sea and beyond.
(E Ershova and K Kosobokova)

But where have the species gone?
 (And does it matter?)

Whether to model diverse, plastic communities as competing, fixed-trait species/populations or continuous, fully plastic trait distributions isn't just a matter of preference or philosophy.

We don't know which of these better highlights the actual drivers of long-term change.

Does the Atlantification of Disko Bay zooplankton depict a shift in the fitness landscape driven by local environmental cycles?

Or is it really about oceanography and ecology upstream, on a large scale?

11 months of transport

We're going to hypothesize recipes for Calanus species, not just individuals, e.g.
"Eurasian C. finmarchicus and C. glacialis are genetically distinct
H) because body size can only vary so much within one breeding population."
H) because C. glacialis is uniquely adapted to eating ice algae."
H) because they have unique overwintering strategies."
H) for no functional reason at all; it's just about advection and connectivity."
(The goal is to reject as many of these as possible.)

Conclusions

The Coltrane model implements the hypothesis (rooted in a lab meta-analysis) that trait differences across northern Calanus populations are the result of a single, shared recipe for growth and development playing out across varying prey and temperature

Banas and Campbell, MEPS, 2016

Banas et al., Front Mar Sci, 2016 cycles.

This hypothesis has proved surprisingly difficult to reject! Both the high adaptive capacity, and limits on adaptive capacity, of this way of being a copepod, arise in our simulations from this general arithmetic of development rate, growth rate, and days of net energy gain per year.

Hunter et al. in prep
McRae et al, in prep

Renaud et al. ICES JMS, 2018

Hobbs et al., Front Mar Sci, submitted species-level adaptations and constraints in shaping that future will require different kinds of evidence.

[^0]:

